Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
2.
Sci Adv ; 9(20): eadf2982, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196091

RESUMO

The synchronization of circadian clock depends on a central pacemaker located in the suprachiasmatic nuclei. However, the potential feedback of peripheral signals on the central clock remains poorly characterized. To explore whether peripheral organ circadian clocks may affect the central pacemaker, we used a chimeric model in which mouse hepatocytes were replaced by human hepatocytes. Liver humanization led to reprogrammed diurnal gene expression and advanced the phase of the liver circadian clock that extended to muscle and the entire rhythmic physiology. Similar to clock-deficient mice, liver-humanized mice shifted their rhythmic physiology more rapidly to the light phase under day feeding. Our results indicate that hepatocyte clocks can affect the central pacemaker and offer potential perspectives to apprehend pathologies associated with altered circadian physiology.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Camundongos , Animais , Ritmo Circadiano/genética , Fígado/metabolismo , Hepatócitos , Relógios Circadianos/genética , Núcleo Supraquiasmático/metabolismo
3.
Drug Metab Dispos ; 49(8): 706-717, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34011532

RESUMO

The squalene synthase inhibitor squalestatin 1 (Squal1) is a potent and efficacious inducer of CYP2B expression in primary cultured rat hepatocytes and rat liver. To determine whether Squal1 is also an inducer of human CYP2B, the effects of Squal1 treatment were evaluated in primary cultured human hepatocytes, differentiated HepaRG cells, and humanized mouse livers. Squal1 treatment did not increase CYP2B6 mRNA levels in human hepatocytes or HepaRG cells and only slightly and inconsistently increased CYP2B6 mRNA content in humanized mouse liver. However, treatment with farnesol, which mediates Squal1's effect on rat CYP2B expression, increased CYP2B6 mRNA levels in HepaRG cells expressing the constitutive androstane receptor (CAR), but not in cells with knocked-down CAR. To determine the impact of cholesterol biosynthesis inhibition on CAR activation, the effects of pravastatin (Prava) were determined on CITCO-mediated gene expression in primary cultured human hepatocytes. Prava treatment abolished CITCO-inducible CYP2B6 expression, but had less effect on rifampicin-mediated CYP3A4 induction, and CITCO treatment did not affect Prava-inducible HMG-CoA reductase (HMGCR) expression. Treatment with inhibitors of different steps of cholesterol biosynthesis attenuated CITCO-mediated CYP2B6 induction in HepaRG cells, and Prava treatment increased HMGCR expression and inhibited CYP2B6 induction with comparable potency. Transfection of HepG2 cells with transcriptionally active sterol regulatory element binding proteins (SREBPs) reduced CAR-mediated transactivation, and inducible expression of transcriptionally active SREBP2 attenuated CITCO-inducible CYP2B6 expression in HepaRG cells. These findings suggest that Squal1 does not induce CYP2B6 in human hepatocytes because Squal1's inhibitory effect on cholesterol biosynthesis interferes with CAR activation. SIGNIFICANCE STATEMENT: The cholesterol biosynthesis inhibitor squalestatin 1 induces rat hepatic CYP2B expression indirectly by causing accumulation of an endogenous isoprenoid that activates the constitutive androstane receptor (CAR). This study demonstrates that squalestatin 1 does not similarly induce CYP2B6 expression in human hepatocytes. Rather, inhibition of cholesterol biosynthesis interferes with CAR activity, likely by activating sterol regulatory element binding proteins. These findings increase our understanding of the endogenous processes that modulate human drug-metabolizing gene expression.


Assuntos
Anticolesterolemiantes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Colesterol/biossíntese , Receptor Constitutivo de Androstano/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Ácidos Tricarboxílicos/farmacologia , Animais , Linhagem Celular , Citocromo P-450 CYP2B6/biossíntese , Citocromo P-450 CYP2D6/biossíntese , Citocromo P-450 CYP2D6/genética , Farneseno Álcool/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Pravastatina/farmacologia , Ratos
4.
Hepatology ; 72(2): 656-670, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31785104

RESUMO

BACKGROUND AND AIMS: Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver-humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species-related, physiological differences. APPROACH AND RESULTS: Fah-/- , Rag2-/- , and Il2rg-/- knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human-like pattern, characterized by a high ratio of low-density lipoprotein to high-density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low-density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human-like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level. CONCLUSIONS: LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.


Assuntos
Benzoatos/farmacocinética , Benzilaminas/farmacocinética , Colesterol/metabolismo , Hepatócitos/metabolismo , Lipoproteínas/metabolismo , Receptores X do Fígado/agonistas , Fígado/metabolismo , Animais , Hepatócitos/transplante , Humanos , Fígado/cirurgia , Masculino , Camundongos , Camundongos Knockout
5.
Mol Cell ; 72(2): 341-354.e6, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270106

RESUMO

Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.


Assuntos
Processamento Alternativo/genética , Carcinogênese/genética , Fatores de Transcrição Kruppel-Like/genética , Oncogenes/genética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética
6.
J Hepatol ; 69(5): 1025-1036, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30031887

RESUMO

BACKGROUND & AIMS: A major limitation in the field of liver transplantation is the shortage of transplantable organs. Chimeric animals carrying human tissue have the potential to solve this problem. However, currently available chimeric organs retain a high level of xenogeneic cells, and the transplantation of impure organs needs to be tested. METHODS: We created chimeric livers by injecting Lewis rat hepatocytes into C57Bl/6Fah-/-Rag2-/-Il2rg-/- mice, and further transplanted them into newly weaned Lewis rats (45 ±â€¯3 g) with or without suboptimal immunosuppression (tacrolimus 0.6 mg/kg/day for 56 or 112 days). Control donors included wild-type C57Bl/6 mice (xenogeneic) and Lewis rats (syngeneic). RESULTS: Without immunosuppression, recipients of chimeric livers experienced acute rejection, and died within 8 to 11 days. With immunosuppression, they all survived for >112 days with normal weight gain compared to syngeneic controls, while all xenogeneic controls died within 98 days due to rejection with Banff scores >6 (p = 0.0014). The chimeric grafts underwent post-transplant remodelling, growing by 670% on average. Rat hepatocytes fully replaced mouse hepatocytes starting from day 56 (absence of detectable mouse serum albumin, histological clearance of mouse hepatocytes). In addition, rat albumin levels reached those of syngeneic recipients. Four months after transplantation of chimeric livers, we observed the development of diffuse mature rat bile ducts through transdifferentiation of hepatocytes (up to 72% of cholangiocytes), and patchy areas of portal endothelium originating from the host (seen in one out of five recipients). CONCLUSIONS: Taken together, these data demonstrate the efficacy of transplanting rat-to-mouse chimeric livers into rats, with a high potential for post-transplant recipient-oriented graft remodelling. Validation in a large animal model is still needed. LAY SUMMARY: Chimeric animals are composed of cells from different species. Chimeric animals carrying human tissue have the potential to increase the availability of transplantable organs. We transplanted rat-to-mouse liver grafts into newly weaned rats. The chimeric grafts underwent post-transplant remodelling with rat hepatocytes replacing all mouse hepatocytes within 56 days. In addition, we observed the post-transplant development of diffuse mature rat bile ducts through the transformation of hepatocytes, and patchy areas of portal endothelium originating from the host. These data demonstrate the efficacy of transplanting rat-to-mouse chimeric livers into rats, with a high potential for post-transplant graft remodelling.


Assuntos
Transplante de Fígado/métodos , Transplante Heterólogo/métodos , Animais , Quimera , Feminino , Rejeição de Enxerto , Hepatócitos/transplante , Imunossupressores/uso terapêutico , Transplante de Fígado/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Transplante Heterólogo/efeitos adversos
7.
J Mol Evol ; 86(3-4): 240-253, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29574604

RESUMO

Melanoma antigen-A11 (MAGE-A11) is an X-linked and primate-specific steroid hormone receptor transcriptional coregulator and proto-oncogenic protein whose increased expression promotes the growth of prostate cancer. The MAGEA11 gene is expressed at low levels in normal human testis, ovary, and endometrium, and at highest levels in castration-resistant prostate cancer. Annotated genome predictions throughout the surviving primate lineage show that MAGEA11 acquired three 5' coding exons unique within the MAGEA subfamily during the evolution of New World monkeys (NWM), Old World monkeys (OWM), and apes. MAGE-A11 in all primates has a conserved FXXIF coactivator-binding motif that suggests interaction with p160 coactivators contributed to its early evolution as a transcriptional coregulator. An ancestral form of MAGE-A11 in the more distantly related lemur has significant amino acid sequence identity with human MAGE-A11, but lacks coregulator activity based on the absence of the three 5' coding exons that include a nuclear localization signal (NLS). NWM MAGE-A11 has greater amino acid sequence identity than lemur to human MAGE-A11, but inframe premature stop codons suggest that MAGEA11 is a pseudogene in NWM. MAGE-A11 in OWM and apes has nearly identical 5' coding exon amino acid sequence and conserved interaction sites for p300 acetyltransferase and cyclin A. We conclude that the evolution of MAGEA11 within the lineage leading to OWM and apes resulted in steroid hormone receptor transcriptional coregulator activity through the acquisition of three 5' coding exons that include a NLS sequence and nonsynonymous substitutions required to interact with cell cycle regulatory proteins and transcription factors.


Assuntos
Antígenos de Neoplasias/genética , Evolução Molecular , Antígenos Específicos de Melanoma/genética , Proteínas de Neoplasias/genética , Filogenia , Primatas/genética , Sequência de Aminoácidos , Animais , Éxons , Humanos
8.
Front Immunol ; 9: 524, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593746

RESUMO

The invention of liver-humanized mouse models has made it possible to directly study the preerythrocytic stages of Plasmodium falciparum. In contrast, the current models to directly study blood stage infection in vivo are extremely limited. Humanization of the mouse blood stream is achievable by frequent injections of human red blood cells (hRBCs) and is currently the only system with which to study human malaria blood stage infections in a small animal model. Infections have been primarily achieved by direct injection of P. falciparum-infected RBCs but as such, this modality of infection does not model the natural route of infection by mosquito bite and lacks the transition of parasites from liver stage infection to blood stage infection. Including these life cycle transition points in a small animal model is of relevance for testing therapeutic interventions. To this end, we used FRGN KO mice that were engrafted with human hepatocytes and performed a blood exchange under immune modulation to engraft the animals with more than 50% hRBCs. These mice were infected by mosquito bite with sporozoite stages of a luciferase-expressing P. falciparum parasite, resulting in noninvasively measurable liver stage burden by in vivo bioluminescent imaging (IVIS) at days 5-7 postinfection. Transition to blood stage infection was observed by IVIS from day 8 onward and then blood stage parasitemia increased with a kinetic similar to that observed in controlled human malaria infection. To assess the utility of this model, we tested whether a monoclonal antibody targeting the erythrocyte invasion ligand reticulocyte-binding protein homolog 5 (with known growth inhibitory activity in vitro) was capable of blocking blood stage infection in vivo when parasites emerge from the liver and found it highly effective. Together, these results show that a combined liver-humanized and blood-humanized FRGN mouse model infected with luciferase-expressing P. falciparum will be a useful tool to study P. falciparum preerythrocytic and erythrocytic stages and enables the testing of interventions that target either one or both stages of parasite infection.


Assuntos
Modelos Animais de Doenças , Malária Falciparum , Animais , Anticorpos Monoclonais/farmacologia , Proteínas de Transporte/imunologia , Eritrócitos/parasitologia , Humanos , Hepatopatias/parasitologia , Malária Falciparum/parasitologia , Camundongos Knockout , Parasitemia/parasitologia , Plasmodium falciparum , Proteínas de Protozoários/imunologia
9.
Oncotarget ; 9(13): 11227-11242, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29541409

RESUMO

Androgen deprivation therapy (ADT) is palliative and prostate cancer (CaP) recurs as lethal castration-recurrent/resistant CaP (CRPC). One mechanism that provides CaP resistance to ADT is primary backdoor androgen metabolism, which uses up to four 3α-oxidoreductases to convert 5α-androstane-3α,17ß-diol (DIOL) to dihydrotestosterone (DHT). The goal was to determine whether inhibition of 3α-oxidoreductase activity decreased conversion of DIOL to DHT. Protein sequence analysis showed that the four 3α-oxidoreductases have identical catalytic amino acid residues. Mass spectrometry data showed combined treatment using catalytically inactive 3α-oxidoreductase mutants and the 5α-reductase inhibitor, dutasteride, decreased DHT levels in CaP cells better than dutasteride alone. Combined blockade of frontdoor and backdoor pathways of DHT synthesis provides a therapeutic strategy to inhibit CRPC development and growth.

10.
JCI Insight ; 3(1)2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29321371

RESUMO

Malaria eradication necessitates new tools to fight the evolving and complex Plasmodium pathogens. These tools include prophylactic drugs that eliminate Plasmodium liver stages and consequently prevent clinical disease, decrease transmission, and reduce the propensity for resistance development. Currently, the identification of these drugs relies on in vitro P. falciparum liver stage assays or in vivo causal prophylaxis assays using rodent malaria parasites; there is no method to directly test in vivo liver stage activity of candidate antimalarials against the human malaria-causing parasite P. falciparum. Here, we use a liver-chimeric humanized mouse (FRG huHep) to demonstrate in vivo P. falciparum liver stage development and describe the efficacy of clinically used and candidate antimalarials with prophylactic activity. We show that daily administration of atovaquone-proguanil (ATQ-PG; ATQ, 30 mg/kg, and PG, 10 mg/kg) protects 5 of 5 mice from liver stage infection, consistent with the use in humans as a causal prophylactic drug. Single-dose primaquine (60 mg/kg) has similar activity to that observed in humans, demonstrating the activity of this drug (and its active metabolites) in FRG huHep mice. We also show that DSM265, a selective Plasmodial dihydroorotate dehydrogenase inhibitor with causal prophylactic activity in humans, reduces liver stage burden in FRG huHep mice. Finally, we measured liver stage-to-blood stage transition of the parasite, the ultimate readout of prophylactic activity and measurement of infective capacity of parasites in the liver, to show that ATQ-PG reduces blood stage patency to below the limit of quantitation by quantitative PCR (qPCR). The FRG huHep model, thus, provides a platform for preclinical evaluation of drug candidates for liver stage causal prophylactic activity, pharmacokinetic/pharmacodynamics studies, and biological studies to investigate the mechanism of action of liver stage active antimalarials.


Assuntos
Antimaláricos/farmacologia , Fígado/efeitos dos fármacos , Fígado/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Atovaquona/farmacologia , Modelos Animais de Doenças , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Malária Falciparum/tratamento farmacológico , Camundongos , Proguanil/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia
11.
Pediatr Infect Dis J ; 37(1): e1-e5, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28746261

RESUMO

BACKGROUND: In July 2014, New Zealand introduced universal infant vaccination with RotaTeq (Merk & Co.) administered as 3 doses at 6 weeks, 3 and 5 months of age. We sought to assess the impact of rotavirus vaccination on gastroenteritis (GE) hospitalizations in the greater Auckland region and analyze changes in rotavirus testing in the period around vaccine introduction. METHODS: Hospitalizations, laboratory testing rates and methods were compared between the pre-vaccine period (2009-2013), post-vaccine period (January 2015 to December 2015) and year of vaccine introduction (2014). RESULTS: There was a 68% decline in rotavirus hospitalizations of children <5 years of age after vaccine introduction (from 258/100,000 to 83/100,000) and a 17% decline in all-cause gastroenteritis admissions (from 1815/100,000 to 1293/100,000). Reductions were also seen in pediatric groups too old to have received vaccine. Despite these changes, rotavirus testing rates in our region remained static in the year after vaccine introduction compared with the 2 prior years, and after vaccine introduction, we observed a high rate of false positives 19/58 (33%) in patients with reactive rotavirus tests. CONCLUSIONS: Rotavirus vaccine has had a significant early impact on gastroenteritis hospitalizations for children in the Auckland region. However, continued rotavirus testing at pre-vaccine rates risks generating false positive results. Laboratories and clinicians should consider reviewing their testing algorithms before vaccine introduction.


Assuntos
Gastroenterite/epidemiologia , Hospitalização/estatística & dados numéricos , Técnicas Microbiológicas/estatística & dados numéricos , Infecções por Rotavirus/epidemiologia , Vacinas contra Rotavirus , Vacinação/estatística & dados numéricos , Pré-Escolar , Reações Falso-Positivas , Gastroenterite/prevenção & controle , Gastroenterite/virologia , Humanos , Lactente , Recém-Nascido , Nova Zelândia/epidemiologia , Rotavirus , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Vacinas Atenuadas
12.
Mol Cell Endocrinol ; 443: 42-51, 2017 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-28042025

RESUMO

Androgen receptor (AR) transcriptional activity depends on interactions between the AR NH2-terminal region and transcriptional coregulators. A yeast two-hybrid screen of a human testis library using predicted α-helical NH2-terminal fragment AR-(370-420) as bait identified suppressor of variegation 3-9 homolog 2 (SUV39H2) histone methyltransferase as an AR interacting protein. SUV39H2 interaction with AR and the AR coregulator, melanoma antigen-A11 (MAGE-A11), was verified in two-hybrid, in vitro glutathione S-transferase affinity matrix and coimmunoprecipitation assays. Fluorescent immunocytochemistry colocalized SUV39H2 and AR in the cytoplasm without androgen, in the nucleus with androgen, and with MAGE-A11 in the nucleus independent of androgen. Chromatin immunoprecipitation using antibodies raised against SUV39H2 demonstrated androgen-dependent recruitment of AR and SUV39H2 to the androgen-responsive upstream enhancer of the prostate-specific antigen gene. SUV39H2 functioned cooperatively with MAGE-A11 to increase androgen-dependent AR transcriptional activity. SUV39H2 histone methyltransferase is an AR coactivator that increases androgen-dependent transcriptional activity through interactions with AR and MAGE-A11.


Assuntos
Antígenos de Neoplasias/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Androgênicos/metabolismo , Sequência de Aminoácidos , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Ligação Proteica , Domínios Proteicos , Receptores Androgênicos/química , Receptores Androgênicos/genética , Transcrição Gênica
13.
Prostate ; 77(5): 505-516, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27976415

RESUMO

BACKGROUND: High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). METHODS: Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. RESULTS: Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. CONCLUSION: AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to promote growth and progression of CRPC. Prostate 77:505-516, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Antígenos de Neoplasias/biossíntese , Proteínas Relacionadas à Folistatina/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/biossíntese , Regulação para Cima/fisiologia , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Masculino , Análise em Microsséries/métodos , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
Mol Cell Endocrinol ; 439: 1-9, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27720894

RESUMO

Melanoma antigen-A11 (MAGE-A11) is a proto-oncogene involved in androgen receptor signaling and androgen-dependent cell growth. In this report we provide evidence that MAGE-A11 interacts with Skp2 (S phase kinase-associated protein), the substrate recognition protein of the Skp1-Cullin1-F-box E3 ubiquitin ligase, and with Skp2 binding protein, cyclin A. A similar cyclin A binding motif in MAGE-A11 and Skp2 was consistent with a competitive relationship between MAGE-A11 and Skp2 in binding cyclin A. Skp2 inhibited MAGE-A11 interaction with cyclin A. Differential effects of MAGE-A11 on Skp2-mediated protein degradation were also revealed. MAGE-A11 increased Skp2-mediated degradation of cyclin A and retinoblastoma-related protein p130. In contrast, MAGE-A11 decreased Skp2-mediated degradation of E2F1 and Skp2 self-ubiquitination. Stabilization of E2F1 by MAGE-A11 was associated with sequestration and inactivation of Skp2 through the formation of an E2F1-MAGE-A11-Skp2 complex. We conclude that direct interactions of MAGE-A11 with Skp2 and cyclin A regulate the substrate-specificity of Skp2-mediated protein degradation.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise , Proteínas Quinases Associadas a Fase S/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/química , Sítios de Ligação , Células COS , Chlorocebus aethiops , Ciclina A/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fator de Transcrição E2F1/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Lentivirus/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/química , Ligação Proteica , Proto-Oncogene Mas , RNA Interferente Pequeno/metabolismo , Receptores Androgênicos/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo , Proteínas Quinases Associadas a Fase S/química , Especificidade por Substrato , Ubiquitinação
16.
Prostate ; 76(12): 1067-77, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27271795

RESUMO

BACKGROUND: The previously established CWR-R1 cell line has been used as an in vitro model representing castration-recurrent prostate cancer. Microscopic observation of subconfluent cells demonstrated two distinct cellular morphologies: polygonal closely aggregated epithelial cells surrounded by bipolar fibroblastic cells with long processes. This study sought to establish and characterize a fibroblast-free derivative of the CWR-R1 cell line. METHODS: The CWR-R1ca cell line was established from CWR-R1 cells by removing fibroblasts using multiple cycles of short-term trypsinization, cloning, and pooling single-cell colonies. Authentication of fibroblast-free CWR-R1ca cells was demonstrated by analyzing the expression of cytodifferentiation and prostate-associated markers, DNA and cytogenetic profiling, and growth pattern in the absence or presence of androgen. RESULTS: CWR-R1ca is an androgen-sensitive cell line that expresses the androgen receptor (AR) and its splice variant 7 and the luminal epithelia markers, CK-8, CK-18, and c-Met. CWR-R1fb fibroblasts isolated from CWR-R1 cells express AR, hepatocyte growth factor-α, and mouse ß-actin but not AR-V7 or epithelial markers. Cytogenetic analysis of CWR-R1ca cells revealed a hyperdiploid male with numerical gains in chromosomes 1, 7, 8, 10, 11, and 12, deletion of one chromosome 2 allele, structural abnormalities that include der(1)t(1:4), der(4)t(2:4), der(10)t(4:10), and an unbalanced reciprocal translocation between chromosome 6 and 14. DNA-profiling revealed that CWR-R1ca cells had significant short-tandem repeat marker homology with CWR22Pc and CWR22Rv1 cell lines, which indicated lineage derivation from CWR22 prostate cancer xenografts. CWR-R1ca cells were responsive to the growth stimulatory effects of dihydrotestosterone (DHT) in the femtomolar range. CONCLUSION: This study establishes CWR-R1ca cells as a fibroblast-free derivative of the castration-recurrent CWR-R1 cell line. Prostate 76:1067-1077, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Fibroblastos/citologia , Neoplasias de Próstata Resistentes à Castração/patologia , Actinas/análise , Animais , Biomarcadores/análise , Linhagem Celular Tumoral , Separação Celular/métodos , Aberrações Cromossômicas , Deleção Cromossômica , Impressões Digitais de DNA , Expressão Gênica , Fator de Crescimento de Hepatócito/análise , Xenoenxertos , Humanos , Cariotipagem , Masculino , Camundongos , Células NIH 3T3 , Transplante de Neoplasias , Próstata/química , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Isoformas de Proteínas/análise , Receptores Androgênicos/análise , Receptores Androgênicos/genética
17.
Nat Commun ; 7: 11350, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27072778

RESUMO

Male gender is protective against multiple sclerosis and other T-cell-mediated autoimmune diseases. This protection may be due, in part, to higher androgen levels in males. Androgen binds to the androgen receptor (AR) to regulate gene expression, but how androgen protects against autoimmunity is not well understood. Autoimmune regulator (Aire) prevents autoimmunity by promoting self-antigen expression in medullary thymic epithelial cells, such that developing T cells that recognize these self-antigens within the thymus undergo clonal deletion. Here we show that androgen upregulates Aire-mediated thymic tolerance to protect against autoimmunity. Androgen recruits AR to Aire promoter regions, with consequent enhancement of Aire transcription. In mice and humans, thymic Aire expression is higher in males compared with females. Androgen administration and male gender protect against autoimmunity in a multiple sclerosis mouse model in an Aire-dependent manner. Thus, androgen control of an intrathymic Aire-mediated tolerance mechanism contributes to gender differences in autoimmunity.


Assuntos
Androgênios/farmacologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Sistema Nervoso Central/patologia , Sexismo , Fatores de Transcrição/metabolismo , Animais , Antígenos/metabolismo , Di-Hidrotestosterona/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/prevenção & controle , Feminino , Imunofluorescência , Humanos , Masculino , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/metabolismo , Timo/efeitos dos fármacos , Timo/metabolismo , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos
18.
Biochem Biophys Rep ; 8: 1-5, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28955934

RESUMO

BACKGROUND AND AIMS: Breast cancer is the most common cancer in women and the second leading cause of cancer-related deaths in this population. Breast cancer related deaths have declined due to screening and adjuvant therapies, yet a driving clinical need exists to better understand the cause of the deadliest aspect of breast cancer, metastatic disease. Breast cancer metastasizes to several distant organs, the liver being the third most common site. To date, very few murine models of hepatic breast cancer exist. METHODS: In this study, a novel murine model of liver breast cancer using the MDA-MB-231 cell line is introduced as an experimental (preclinical) model. RESULTS: Histological typing revealed consistent hepatic breast cancer tumor foci. Common features of the murine model were vascular invasion, lung metastasis and peritoneal seeding. CONCLUSIONS: The novel murine model of hepatic breast cancer established in this study provides a tool to be used to investigate mechanisms of hepatic metastasis and to test potential therapeutic interventions.

19.
J Biol Chem ; 290(41): 25174-87, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26330556

RESUMO

X-linked primate-specific melanoma antigen-A11 (MAGE-A11) is a human androgen receptor (AR) coactivator and proto-oncogene expressed at low levels in normal human reproductive tract tissues and at higher levels in castration-resistant prostate cancer where it is required for androgen-dependent cell growth. In this report, we show that MAGE-A11 is targeted for degradation by human p14-ARF, a tumor suppressor expressed from an alternative reading frame of the p16 cyclin-dependent kinase inhibitor INK4a/ARF gene. MAGE-A11 degradation by the proteasome was mediated by an interaction with p14-ARF and was independent of lysine ubiquitination. A dose-dependent inverse relationship between MAGE-A11 and p14-ARF correlated with p14-ARF inhibition of the MAGE-A11-induced increase in androgen-dependent AR transcriptional activity and constitutive activity of a splice variant-like AR. Reciprocal stabilization between MAGE-A11 and AR did not protect against degradation promoted by p14-ARF. p14-ARF prevented MAGE-A11 interaction with the E2F1 oncoprotein and inhibited the MAGE-A11-induced increase in E2F1 transcriptional activity. Post-translational down-regulation of MAGE-A11 promoted by p14-ARF was independent of HDM2, the human homologue of mouse double minute 2, an E3 ubiquitin ligase inhibited by p14-ARF. However, MAGE-A11 had a stabilizing effect on HDM2 in the absence or presence of p14-ARF and cooperated with HDM2 to increase E2F1 transcriptional activity in the absence of p14-ARF. We conclude that degradation of MAGE-A11 promoted by the human p14-ARF tumor suppressor contributes to low levels of MAGE-A11 in nontransformed cells and that higher levels of MAGE-A11 associated with low p14-ARF increase AR and E2F1 transcriptional activity and promote the development of castration-resistant prostate cancer.


Assuntos
Antígenos de Neoplasias/metabolismo , Regulação para Baixo , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Fator de Transcrição E2F1/metabolismo , Humanos , Masculino , Fenótipo , Neoplasias de Próstata Resistentes à Castração/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proto-Oncogene Mas , Transcrição Gênica
20.
Stem Cell Res ; 13(3 Pt A): 404-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25310256

RESUMO

Preclinical research in animals often fails to adequately predict the outcomes observed in human patients. Chimeric animals bearing individual human tissues have been developed to provide improved models of human-specific cellular processes. Mice transplanted with human hematopoietic stem cells can be used to study human immune responses, infections of blood cells and processes of hematopoiesis. Animals with humanized livers are useful for modeling hepatotropic infections as well as drug metabolism and hepatotoxicity. However, many pathophysiologic processes involve both the liver and the hematolymphoid system. Examples include hepatitis C/HIV co-infection, immune mediated liver diseases, liver injuries with inflammation such as steatohepatitis and alcoholic liver disease. We developed a robust protocol enabling the concurrent double-humanization of mice with mature hepatocytes and human blood. Immune-deficient, fumarylacetoacetate hydrolase (Fah(-/-)), Rag2(-/-) and Il2rg(-/-) deficient animals on the NOD-strain background (FRGN) were simultaneously co-transplanted with adult human hepatocytes and hematopoietic stem cells after busulfan and Ad:uPA pre-conditioning. Four months after transplantation the average human liver repopulation exceeded 80% and hematopoietic chimerism also was high (40-80% in bone marrow). Importantly, human macrophages (Kupffer cells) were present in the chimeric livers. Double-chimeric FRGN mice will serve as a new model for disease processes that involve interactions between hepatocytes and hematolymphoid cells.


Assuntos
Hematopoese , Hepatócitos/citologia , Animais , Antígenos CD/metabolismo , Quimerismo , Feminino , Hepatócitos/transplante , Humanos , Hidrolases/deficiência , Hidrolases/genética , Hidrolases/metabolismo , Imuno-Histoquímica , Fígado/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Albumina Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...